Nanosecond pulse plasma assisted ignition simulations at atmospheric pressure
نویسندگان
چکیده
Ignition assistance by a pulsed applied voltage is investigated in a canonical one-dimensional configuration. An incipient ignition kernel, formed by localized energy deposition into a lean mixture of methane and air at atmospheric pressure, is subjected to sub-breakdown electric fields by a DC potential applied across the domain, resulting in non-thermal behavior of the electron sub-fluid formed during the discharge. A two-fluid approach is employed to couple thermal neutrals and ions to the non-thermal electrons, and a two-temperature plasma mechanism describing gas phase combustion, excitation of neutral species, and high-energy electron kinetics is employed to account for non-thermal chemical effects. Charged species transported from the ignition zone drift rapidly through the domain, augmenting the magnitude of the electric field in the fresh gas during the pulse through a dynamic-electrode effect, which results in an increase in the energy of the electrons in the fresh mixture with increasing time. Enhanced fuel and oxidizer decomposition due to electron impact dissociation and interaction with excited neutrals generate a pool of radicals, mostly O and H, in the fresh gas ahead of the flame’s preheat zone. The effect of the nanosecond pulse is to increase the mass of fuel burned at equivalent times relative to the unsupported ignition through enhanced radical generation, resulting in an increased heat release rate in the immediate aftermath of the pulse.
منابع مشابه
Emission spectroscopy of a microhollow cathode discharge plasma in helium-water gas mixtures
Related Articles Convoluted effect of laser fluence and pulse duration on the property of a nanosecond laser-induced plasma into an argon ambient gas at the atmospheric pressure J. Appl. Phys. 113, 013304 (2013) Developing the model of laser ablation by considering the interplay between emission and expansion of aluminum plasma Phys. Plasmas 20, 013301 (2013) X-ray emission from a nanosecond-pu...
متن کاملPlasma-assisted combustion*
This paper presents an overview of experimental and numerical investigations of the nonequilibrium cold plasma generated under high overvoltage and further usage of this plasma for plasma-assisted combustion. Here, two different types of the discharge are considered: a streamer under high pressure and the so-called fast ionization wave (FIW) at low pressure. The comprehensive experimental inves...
متن کاملA ‘frozen electric-field’ approach to simulate repetitively pulsed nanosecond plasma discharges and ignition of hydrogen–air mixtures
High-fidelity modelling of nanosecond repetitively pulsed discharges (NRPDs) is burdened by the multiple time and length scales and large chemistry mechanisms involved, which prohibit detailed analyses and parametric studies. In the present work, we propose a ‘frozen electric-field’ modelling approach to expedite the NRPD simulations without adverse effects on the solution accuracy. First, a bu...
متن کاملStudies of C2H6/ air and C3H8/ air Plasma assisted combustion kinetics in a nanosecond discharge
The paper presents the studies of ethane and propane/air plasma assisted combustion at a pressure of 60 torr and temperature 300K. O atoms in the plasma have been measured as a function of time after a single discharge pulse using TALIF (Two photon laser induced fluorescence) at 60 torr and temperature of 300 K for these mixtures at various equivalence ratios. A plasma chemistry model of hydroc...
متن کاملVibrational and rotational CARS measurements of nitrogen in afterglow of streamer discharge in atmospheric pressure fuel/air mixtures
The use of nonequilibrium plasma generated by nanosecond discharges to ignite fuel/air mixtures, known as transient plasma ignition (TPI), has been shown to effectively reduce ignition delay and improve engine performance relative to spark ignition for combustion engines. While this method is potentially useful for many engine applications, at present the underlying physics are poorly understoo...
متن کامل